Uncovering Stops with Compressed Spectra using Deconstructed Transverse Mass Variables

Devin Walker SLAC/Stanford University

In collaboration with A. Ismail, A. Schwartzman, R. Schwienhorst and J. Virzi

Natural Weak Scale SUSY

 Natural SUSY requires light stops* to resolve the top quark induced quadratic divergences.

 Compels exploring/ruling out all of stop parameter space.

^{*}See Dine's talk, Barbieri and Giudice, Nucl. Phys. B306; Carlos and Casas, Phys. Lett. B309; ...

Today's Considerations

- I. R-parity conserving SUSY* with one light stop.
- 2. Stop pair production w/100% $\tilde{t}_1 \rightarrow t + \tilde{Z}_1$ BF
- 3. Semi-leptonic top pair decays. (Final states with one lepton + 2 b-jets + n-jets + MET)

^{*}Techniques work for generic top partners with MET in final state. See K. Agashe's HE4 talk on benchmarks.

Stop Searches

The most important parameter for stop searches*:

$$\Delta M_{\tilde{t}_1 Z_1} = m_{\tilde{t}} - m_{Z_1}$$

(Smallest value = compressed spectrum/experimentally difficult)

*Han, Mahbubani, Wang and Walker, JHEP 0905

Recent Stop Searches @ the LHC

Goal: Discuss kinematic variables/searches to enhance experimental efforts in the compressed region.

Talk Contents

I. Introduce deconstructed transverse mass variables*.

2. Summary of a stop search using these variables.

^{*}A. Ismail, A. Schwartzman, R. Schwienhorst, J. Virzi and D. Walker, arXiv I 304.00xx, arXiv I 304.00yy

Deconstructed Transverse Mass Variables

Motivation

- Traditional missing energy searches are "cut and count" relying on a statistically significant excess of large E_T events.
- Missing energy is not only a scalar but also a vector!
- We want to include vector information to make missing energy searches more efficient/maximize LHC.

W Transverse Mass

W + n-jets + MET
$$M_T^2 = 2 E_{lT} E_T (1 - \cos \phi)$$

$$\vdots$$

- My claim: Traditional transverse mass cuts do not maximally optimize signal-to-background.
- MET can be small for compressed spectra events.
 Can the directional information between the missing energy vector and lepton enable better cuts?

Redefine:
$$M_T^2 = 2 E_{lT} \not\!\!E_T (1 - \cos \phi)$$

$$Q \equiv 1 - \frac{M_{\rm T}^2}{2 p_{lT} \not E_T} \qquad \cos \phi \equiv \frac{\vec{p}_{lT} \cdot \not E_T}{p_{lT} \not E_T}$$

Redefine:
$$M_T^2 = 2 E_{lT} \not\!\!E_T (1 - \cos \phi)$$

Fixed:

Redefine:
$$M_T^2 = 2 E_{lT} \not\!\!E_T (1 - \cos \phi)$$

$$Q \equiv 1 - \frac{M_{\rm T}^2}{2 p_{lT} \not E_T} \qquad \cos \phi \equiv \frac{\vec{p}_{lT} \cdot \not E_T}{p_{lT} \not E_T}$$

- We essentially deconstructed the transverse mass into components that (maximally) preserve information about the missing energy.
 - Q goes to I in the large MET limit.
 - cos gives angle between MET transverse vector and lepton

stop pair production signal 400 GeV stop/200 GeV neutralino

All SM backgrounds

More on the backgrounds, simulation, cuts later.

Signal events w/moderately boosted DM.

More on the backgrounds, simulation, cuts later.

transverse masses

- What does this buy us?
 - Cut contours allow the traditional transverse mass cut to vary depending on the missing energy vector and scalar.
 - Allows cuts in the Q/cosphi plane to better isolate the signal. Cut contours can be optimized for different $\Delta M_{\tilde{t}_1 Z_1}$ searches.

• Optimized $\Delta M_{\tilde{t}_1 Z_1}$ searches (unnormalized plots):

Another New Variable

SM semi-leptonic top pair production:

- Top reconstruction generates a two-fold ambiguity in the neutrino momentum.
- We choose the neutrino reconstruction to be:

$$p_{\nu L} = A' p_{blL} / 2(E_{bl}^2 - p_{blL}^2) \pm \frac{1}{2(E_{bl}^2 - p_{blL}^2)} \times (p_{blL}^2 A'^2 + (E_{bl}^2 - p_{blL}^2) (A'^2 - 4E_{bl}^2 E_T^2))^{1/2}$$

$$A' = m_t^2 - M_{bl}^2 + 2 \, \vec{p}_{blT} \cdot E_T$$

Variable Definition

$$\chi_{t} = p_{blL}^{2} A^{'2} + (E_{bl}^{2} - p_{blL}^{2}) (A^{'2} - 4E_{bl}^{2} E_{T}^{2})$$

$$A' = m_{t}^{2} - M_{bl}^{2} + 2 \vec{p}_{blT} \cdot \vec{E}_{T}$$

- Signal generates imaginary top reconstruction.*
- Detector smearing gives imaginary reconstruction.
- We place an optimized cut on how "imaginary" the event is to reduce smeared fakes.

*See, Han, Mahbubani, Walker, Wang, JHEP 0905 (2009)

Search for Stop Pair Production

Basic ATLAS Acceptance Cuts*

- I. Four leading jets with pT > 80/60/40/25 GeV and $|\eta| < 2.5$.
- 2. Electron/muon pT > 25 GeV and $|\eta| < 2.47 / |\eta| < 2.4$.
- 3. Jets/leptons isolated with $\Delta R < 0.4$.
- 4. I b-tag with 75% b-tagging efficiency

All applied except for the pT > 80/60/40/25 GeV and delta_phi(jet, MET) cuts.

Basic ATLAS Acceptance Cuts*

- 5. I30 GeV < Mjjj < 205 GeV.
- 6. No additional leptons with pT > 10 GeV.
- 7. QCD fake cut: $|MET + M_T(w)| > 60 \text{ GeV}$.
- 8. delta_phi(jet, MET) < 0.8 for first two jets.

All applied except for the pT > 80/60/40/25 GeV and delta_phi(jet, MET) cuts.

Basic ATLAS Acceptance Cuts*

- 9. M_T > 140 GeV and M_T < 250 GeV
- 10. MET > 150 GeV
- II. MET/ Root(H_T) > 8 GeV $^{(1/2)}$

Did not apply...

Place the following cuts in addition to ATLAS cuts:

- I. Q/cosphi cut.
- 2. χ_t cut.

For 400 stop and 200 GeV neutralino benchmark:

SM backgrounds included:

top pair (semi-)leptonic, ttV, w+ jets, z + jets, single top, ww, wz,wbb, ...

For 400 stop and 200 GeV neutralino:

with 20/fb luminosity @ 8 TeV

χ_t cuts:

400 GeV stop/200 GeV neutralino

Results for Signal Point

Result from (400/200) signal benchmark: S/B = 64/47 = 1.36

Most Recent Exclusion Plot*

Most Recent Exclusion Plot*

95% c.l. exclusion

- I. Method can be applied "above the line."
- 2. Check extent of exclusion. Probe further?
- 3. Single stop exclusion for light stops (above the line as well).

Snowmass Contribution

 Use analysis to contribute to the reach of top partner searches with large MET.

Contribute to compressed spectra effort.

Snowmass Contribution

Thank you!